The Armfield HT10XC is a service unit that can be used in conjunction with a range of small-scale accessories for a wide range of demonstrations into the modes of heat transfer. The factors that affect heat transfer can be investigated and some of the practical problems associated with the transfer of heat can be clearly demonstrated. The heat transfer accessories may be individually connected to the HT10XC service unit, which provides the necessary electrical supplies and measurement facilities for investigation and comparison of the different heat transfer characteristics.

KEY FEATURES

- Small-scale, benchtop equipment
- Common service unit avoids unnecessary cost duplication for control and instrumentation
- Multiple accessories available covering a wide range of heat transfer investigations
- Computer control of heaters, water flow, air flow, with safety functions implemented to allow for remote operation
- Improved accuracy for quantitative results, which can be related directly to theory
- Integral USB interface
- Full educational software, with data logging, control, graph plotting, and detailed ‘Help’ facility

Remote operation capability

A specific feature of the HT10XC is that it incorporates the facilities and safety features to enable the accessories to be remotely controlled from an external computer, if required. With suitable (user-provided) software, the equipment can be operated remotely, e.g. over an intranet or even over the internet. All the facilities can also be accessed locally using the front panel controls and display.
SOFTWARE CONTINUED – USER-DEFINED SOFTWARE AND/OR REMOTE OPERATION

included separately on the software CD are the drivers required to enable other software applications to communicate with the HT10XC via the USB system. This enables users to write their own software instead of using the Armfield-provided software. This software can be written in many different formats, typically LabVIEW™, MatLab, ‘C’, ‘C++’, Visual Basic, Delphi, and any other software environment, which allows calls to external drivers can be used. In this way users can write software to suit their specific requirements, in an environment they are fully familiar with and which is compatible with their other equipment.

An extension of this methodology enables the equipment to be operated remotely, such as over a local area network (LAN) or even over the internet. The HT10XC is ideal for this remote operation as it has been designed to ensure that the unit shuts down safely in the event of a communications failure. It has also been designed so that once the heat transfer accessory has been installed and configured, all the controls to perform a series of investigations are under software control, and so the student does not need to be present with the equipment. In a typical installation, the HT10XC would be connected to a local PC via the USB bus. The local PC would be connected to the users’ PCs via LAN. The operator interface software would be run on the remote (user’s) PC and communicate to the control software on the local PC (Note: Armfield do not provide the software to implement this type of system).

For remote use, the appropriate heat transfer accessory would be connected to the service unit and the unit switched on. It remains in ‘standby’ mode until appropriate software is run requesting the unit to power up. The functions, which can be implemented remotely, are dependent on the accessory being used. For some accessories the configuration has to be manually implemented locally. E.g. HT11C, the required material sample has to be inserted manually. However, once this has been done, a full set of investigations can be performed for that configuration remotely.

REQUIREMENTS

Single-phase electricity supply:
HT10XC-A: 230V / 1ph / 50Hz @ 5 amp
HT10XC-B: 115V / 1ph / 60Hz @ 10 amp
HT10XC-G: 220V / 1ph / 60Hz @ 5 amp

(Current figures are worst-case figures, including the supply to appropriate accessory.)

OVERALL DIMENSIONS

Height: 0.24m
Width: 0.32m
Depth: 0.39m

SHIPPING SPECIFICATION

Volume: 0.05m³
Gross weight: 15kg

ORDERING CODES

HT10XC-A: 230V / 1ph / 50Hz @ 5 amp
HT10XC-B: 115V / 1ph / 60Hz @ 10 amp
HT10XC-G: 220V / 1ph / 60Hz @ 5 amp

ORDERING SPECIFICATION

• A benchtop service unit designed to interface to a range of heat transfer accessories
• Provides a variable, stabilised 0-24V DC supply to the heater of the heat transfer accessory, with a current capability of 9A
• Provides a drive signal for a proportioning solenoid valve used for flow control
• Provides a control signal to a variable-speed blower used for generating airflow
• Ten temperature inputs and conditioning circuits for K-type thermocouples:
 • Nine off, 0-133°C, resolution <0.1°C
 • One off, 0-500°C, resolution <0.15°C
 • Instrumentation inputs for heater voltage, heater current, air flow, water flow, radiation and light meter
• Integral USB interface, and educational software for all accessories
• Outputs can be controlled manually from the front panel, or controlled by the software from a user-supplied PC
• Easy interfacing to third-party software, e.g LabVIEW™
• Watchdog circuit for operator and equipment safety in case of computer or interface failure when being controlled remotely
• A comprehensive instruction manual describing how to carry out the laboratory teaching exercises in unsteady state heat transfer and their analysis as well as assembly, installation and commissioning is included
EXPERIMENTAL CAPABILITIES

- Understanding the use of the Fourier rate equation in determining rate of heat flow through solid materials
- Measuring the temperature distribution for steady-state conduction of energy through a uniform plane wall and a composite plane wall
- Determining the constant of proportionality (thermal conductivity k) of different materials (conductors and insulators)
- Measuring the temperature drop at the contact face between adjacent layers in a composite plane wall (contact resistance)
- Measuring the temperature distribution for steady-state conduction of energy through a plane wall of reduced cross-sectional area
- Understanding the application of poor conductors (insulators)
- Observing unsteady-state conduction (qualitative only)

ESSENTIAL ACCESSORIES

HT10XC Computer-Controlled Heat Transfer Service Unit

REQUIREMENTS

- Cold water supply: 1.5 l/min @ 1 bar
 All electrical requirements are obtained from the service unit.

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th>HT11:</th>
<th>HT11C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height:</td>
<td>0.29m</td>
</tr>
<tr>
<td>Width:</td>
<td>0.43m</td>
</tr>
<tr>
<td>Depth:</td>
<td>0.21m</td>
</tr>
</tbody>
</table>

SHIPPING SPECIFICATION

<table>
<thead>
<tr>
<th>HT11:</th>
<th>HT11C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume:</td>
<td>0.04m³</td>
</tr>
<tr>
<td>Gross weight: 5kg</td>
<td>Gross weight: 6kg</td>
</tr>
</tbody>
</table>

ORDERING CODES

<table>
<thead>
<tr>
<th>HT11</th>
<th>HT11C</th>
</tr>
</thead>
</table>

ORDERING SPECIFICATION

- A small-scale accessory to introduce students to the principles of linear heat conduction, and to enable the conductivity of various solid conductors and insulators to be measured
- Comprises a heating section, a cooling section, plus four intermediate section conductor samples and two insulator samples
- The heating section, cooling section and one of the intermediate sections are fitted with thermocouples (eight in total) evenly spread along the length of the assembled conduction path
- All sections are thermally insulated to minimise errors due to heat loss
- Includes a water pressure regulator and a manual flow control valve
- Computer-controlled unit includes an electronic proportioning solenoid valve to control the cooling water flow rate and a water flow meter
- Heater power variable up to 60W
- Water flow rate variable up to 1.5 l/min
- Heating and cooling sections, 25mm diameter
- A comprehensive instruction manual is included

The Armfield Linear Heat Conduction accessories are designed to demonstrate the application of the Fourier rate equation to simple steady-state conduction in one dimension.

The units can be configured as a simple plane wall of uniform material and constant cross-sectional area, or as composite plane walls with different materials or changes in cross-sectional area. This enables the principles of heat flow by linear conduction to be investigated.

Measurement of the heat flow and temperature gradient enables the thermal conductivity of the material to be calculated. The design allows the conductivity of thin samples of insulating material to be determined.

On the HT11C the heater power and the cooling water flow rate are controlled via the HT10XC, either from the front panel or from the computer software. On the HT11 these are controlled manually.

TECHNICAL DETAILS

The accessory comprises a heating section and cooling section, which can be clamped together or clamped with interchangeable intermediate sections between them, as required. The temperature difference created by the application of heat to one end of the resulting wall and cooling at the other end results in the flow of heat linearly through the wall by conduction.

Thermocouples are positioned along both the heated section and cooled sections at uniform intervals of 15mm to measure the temperature gradient along the sections. A pressure regulator is incorporated to minimise the effect of fluctuations in the supply pressure.

A control valve allows the flow of cooling water to be varied, if required, over the operating range of 0-1.5 l/min. The cooling water flow rate is measured by a turbine type flow sensor (HT11C only).

Four intermediate sections are supplied as follows:
- 30mm-long brass section of the same diameter as the heating and cooling sections and fitted with two thermocouples at the same intervals. When this section is clamped between the heating and cooling sections, a long plane wall of uniform material and cross-section is created with temperatures measured at eight positions
- Stainless-steel section of the same dimensions as the brass section to demonstrate the effect of change in thermal conductivity
- Aluminium section of the same dimensions as the brass section to demonstrate the effect of change in thermal conductivity
- 30mm-long brass section reduced in diameter to 13mm to demonstrate the effect of change in cross-sectional area
- 30mm-long brass section of the same diameter as the stainless steel specimen to demonstrate the difference between good and poor thermal contact between the sections.

A tube of thermal paste is provided to supply between the heating and cooling sections. The heat-conducting properties of insulators may be found by simply inserting the paper or cork specimens supplied between the heating and cooling sections.

The heat-conducting properties of insulators may be found by simply inserting the paper or cork specimens supplied between the heating and cooling sections. This enables the principles of heat linear conduction to be investigated.

Temperature distribution for conduction though a plane wall (with and without thermal paste)
Temperature distribution for conduction through a composite wall

Thermocouple position

Temperature

Thermocouple position

Temperature

<table>
<thead>
<tr>
<th>Specimen position</th>
<th>Filter regulator valve</th>
<th>Cooling water inlet</th>
<th>Cooling water outlet</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T4</td>
<td>T5</td>
</tr>
<tr>
<td>T6</td>
<td>T7</td>
<td>T8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Armfield Radial Heat Conduction accessories have been designed to demonstrate the application of the Fourier rate equation to simple steady-state conduction radially through the wall of a tube. The arrangement, using a solid metal disk with temperature measurements at different radii and heat flow radially outward from the centre to the periphery, enables the temperature distribution and flow of heat by radial conduction to be investigated.

On the HT12C the heater power and the cooling water flow rate are controlled via the HT10XC, either from the front panel or from the computer software. On the HT12 these are controlled manually.

TECHNICAL DETAILS

The accessory comprises a solid disk of material, which is heated at the centre and cooled at the periphery to create a radial temperature difference with corresponding radial flow of heat by conduction. Six K-type thermocouples are positioned at different radii in the heated disk to indicate the temperature gradient between the central heated core and the cooled periphery of the disk. The radial distance between each thermocouple in the disk is 10mm. Quick-release connections facilitate rapid connection of the cooling tube to a cold water supply. A pressure regulator is incorporated to minimise errors due to heat loss. A control valve permits the flow of cooling water to be varied, if required, over the operating range of 0-1.5 l/min. The cooling water flow rate is measured by a turbine type flow sensor (HT12C only).

EXPERIMENTAL CAPABILITIES

> Understanding the use of the Fourier rate equation in determining rate of heat flow through solid materials
> Measuring the temperature distribution for steady-state conduction of energy through the wall of a cylinder (radial energy flow)
> Determining the constant of proportionality (thermal conductivity k) of the disk material

ESSENTIAL ACCESSORIES

HT10XC Computer-Controlled Heat Transfer Service Unit

REQUIREMENTS

Cold water supply: 1.5 l/min @ 1 bar

All electrical requirements are obtained from the service unit.

OVERALL DIMENSIONS

HT12:
Height: 0.19m Width: 0.35m Depth: 0.18m

HT12C:
Height: 0.19m Width: 0.43m Depth: 0.18m

SHIPPING SPECIFICATION

HT12:
Volume: 0.03m³ Gross weight: 5kg

HT12C:
Volume: 0.4m³ Gross weight: 6kg

ORDERING CODES

HT12
HT12C
Radiant heat exchange – HT13

This Armfield accessory has been designed to demonstrate the laws of radiant heat transfer and radiant heat exchange using light radiation to complement the heat demonstrations where the use of thermal radiation would be impractical.

The equipment supplied comprises an arrangement of energy sources, measuring instruments, aperture plates, filter plates, and target plates, which are mounted on a linear track, in different combinations, to suit the particular laboratory teaching exercise chosen.

TECHNICAL DETAILS

The track consists of a rigid aluminium frame with twin horizontal rails, which incorporates sliding carriages to enable the positions of the instrumentation, filters, and plates to be varied. The position of the carriages relative to the energy source can be measured using a graduated scale attached to the side of the track. The track is designed to stand on the benchtop alongside the HT10XC Heat Transfer Service Unit. The heat source consists of a flat copper plate, which is heated from the rear by an insulated electric heating element. It operates at low voltage for increased operator safety. The source lamp in a housing with a glass diffuser operates at 24V DC maximum.

The front of the plate is coated with a heat-resistant matte black paint, which provides a consistent emissivity close to unity. The surface temperature of the plate is measured by a thermocouple, which is attached to the front of the plate. Radiation from the heated plate is measured using a heat radiation detector (radiometer), which is designed to stand on the benchtop and connect to the Heat Transfer Service Unit without the need for tools. The source with radiometer is used where appropriate to demonstrate the principles.

Two cork-coated metal plates are supplied that can be positioned along the graduated track on a carriage. Filter plates of varying opacity and thickness are supplied to demonstrate the laws of absorption.

EXPERIMENTAL CAPABILITIES

> Inverse-square law using the heat source and radiometer or light source and light meter
> Stefan-Boltzmann law using the heat source and radiometer
> Emissivity using the heat source, metal plates and radiometer
> Kirchoff’s circuit laws using the heat source, metal plates and radiometer
> Area factors using the heat source, aperture and radiometer
> Lambert’s cosine law using the light source (rotated) and light meter
> Lambert’s law of absorption using the light source, filter plates and light meter

Two cork-coated metal plates are supplied that can be positioned along the graduated track on a carriage. Metal plates with different surface finishes are supplied to demonstrate the effect of emissivity on radiation emitted and received. Two black plates, one grey plate and one polished plate are supplied together with a track-mounted carrier which positions the plates in front of the heat source. Each plate incorporates a thermocouple to indicate the surface temperature of the plate.

Two cork-coated metal plates are supplied that can be positioned along the graduated track on a carriage. Filter plates of varying opacity and thickness are supplied to demonstrate the laws of absorption.

ESSENTIAL ACCESSORIES

• A comprehensive instruction manual describing how students to the basic laws of radiant heat transfer and radiant heat exchange
• A heat source with radiometer and a light source with light meter are used where appropriate to demonstrate the principles
• The heat source consists of a flat circular plate 100mm in diameter, which incorporates a 216W electric heating element (operating at 24V DC maximum)
• The light source consists of a 60W light bulb (operating at 24V DC maximum) mounted inside a housing with a glass diffuser
• The heat and light sources, instruments, filters and plates are mounted on an aluminium track with graduated scale, which is designed to stand on the benchtop and connect to the Heat Transfer Service Unit without the need for tools
• A comprehensive instruction manual describing how to carry out the laboratory teaching exercises in radiant heat transfer/exchange and their analysis as well as assembly, installation and commissioning is included

OVERALL DIMENSIONS

Height: 0.44m
Width: 1.23m
Depth: 0.30m

SHIPPING SPECIFICATION

Volume: 0.3m³
Gross weight: 12kg

ORDERING SPECIFICATION

• A small-scale accessory designed to introduce students to the basic laws of radiant heat transfer and radiant heat exchange
• A heat source with radiometer and a light source with light meter are used where appropriate to demonstrate the principles
• The heat source consists of a flat circular plate 100mm in diameter, which incorporates a 216W electric heating element (operating at 24V DC maximum)
• The light source consists of a 60W light bulb (operating at 24V DC maximum) mounted inside a housing with a glass diffuser
• The heat and light sources, instruments, filters and plates are mounted on an aluminium track with graduated scale, which is designed to stand on the benchtop and connect to the Heat Transfer Service Unit without the need for tools
• A comprehensive instruction manual describing how to carry out the laboratory teaching exercises in radiant heat transfer/exchange and their analysis as well as assembly, installation and commissioning is included
A hot surface loses heat (heat is transferred) to its surroundings by the combined modes of convection and radiation. In practice these modes are difficult to isolate, so an analysis of the combined effects at varying surface temperature and air velocity over the surface provides a meaningful teaching exercise.

The heated surface studied is a horizontal cylinder, which can be operated in free convection or forced convection when located in the stream of moving air. Measurement of the surface temperature of the uniformly heated cylinder and the electrical power supplied to it enables the combined effects of radiation and convection to be compared with theoretical values. The dominance of convection at lower surface temperatures and the dominance of radiation at higher surface temperatures can be demonstrated as can the increase in heat transfer due to forced convection.

On the HT14C, the heater power and the air flow are controlled via the HT10XC, either from the front panel, or from the computer software. On HT14 these are controlled manually.
A long horizontal rod, which is heated at one end, provides an extended surface (pin) for heat transfer measurements. Thermocouples at regular intervals along the rod allow the surface temperature profile to be measured. By making the diameter of the rod small in relation to its length, thermal conduction along the rod can be assumed to be one-dimensional and heat loss from the tip can be ignored. The measurements obtained can be compared with a theoretical analysis of thermal conduction along the bar combined with heat loss (heat transferred) to the surroundings by the modes of free convection and radiation simultaneously.

TECHNICAL DETAILS

The rod is manufactured from brass and mounted horizontally with support at both ends positioned to avoid the influence of adjacent surfaces. The rod is coated with a heat-resistant matte black paint, which provides a consistent emissivity close to unity. It is heated by an electric heating element, which operates at low voltage for increased operator safety and is protected by a thermostat to prevent damage from overheating.

Eight thermocouples are attached to the surface of the rod at equal intervals of 50mm, giving an overall instrumented length of 350mm. Another thermocouple is mounted adjacent to the heated rod to measure the ambient air temperature. The heated end of the rod is mounted coaxially inside a plastic housing, which provides an air gap and insulates the area occupied by the heater, in order to minimise heat loss and prevent burns to the operator.

EXPERIMENTAL CAPABILITIES

- Measuring the temperature distribution along an extended surface (pin) and comparing the result with a theoretical analysis
- Calculating the heat transfer from an extended surface resulting from the combined modes of free convection and radiation heat transfer and comparing the result with a theoretical analysis

ESSENTIAL ACCESSORIES

HT10XC Computer-Controlled Heat Transfer Service Unit

OVERALL DIMENSIONS

- Height: 0.15m
- Width: 0.50m
- Depth: 0.15m

SHIPPING SPECIFICATION

- Volume: 0.01m³
- Gross weight: 5kg

ORDERING SPECIFICATION

- A small-scale accessory designed to demonstrate the temperature profiles and heat transfer characteristics for an extended surface when heat flows along the rod by conduction and heat is lost along the rod by combined convection and radiation to the surroundings
- The extended surface comprises a 10mm-diameter long solid brass rod mounted horizontally and heated at one end with a 20W, 24V DC heater
- Eight thermocouples mounted at 50mm intervals along the rod provide the temperature distribution
- The temperature of the ambient air is measured by an independent thermocouple
- The accessory is mounted on a PVC baseplate, which is designed to stand on the benchtop and connect to the Heat Transfer Service Unit without the need for tools
- A comprehensive instruction manual is included
Radiative heat transfer between a thermometer and its surroundings may significantly affect temperature readings obtained from the thermometer, especially when the temperature of a gas is to be measured while the thermometer ‘sees’ surrounding surfaces at a higher or lower temperature than the gas. The error in the reading from the thermometer is also affected by other factors such as the gas velocity over the thermometer, the physical size of the thermometer and the emissivity of the thermometer body. In this equipment a group of thermocouples are used to measure the temperature of a stream of air, at ambient temperature, passing through the centre of a duct while the wall of the duct is elevated in temperature to subject the thermocouples to a source of thermal radiation. Each thermocouple gains heat by radiation from the heated section to be measured.

On the HT16-G the heater power, the air flow rate and the position of the radiation shield can all be controlled via the HT10XC, either from the front panel controls or from the software. On HT16, these parameters are adjusted manually.

TECHNICAL DETAILS

The equipment comprises a tubular metal duct through which air, at ambient temperature, is blown vertically upward by an electric fan. A section of the duct wall is heated from the outside by an electric band heater and provides the source of radiation to the test thermocouples. Three thermocouples with different styles or sizes of bead are installed in the duct to demonstrate the differences in readings obtained.

The temperature of the heated wall can be changed by varying the power supplied to the heater. The actual temperature of the heated surface is measured using another thermocouple, which is attached to it. The effect of the duct wall temperature on the temperature measurements can be demonstrated. A further thermocouple is installed upstream of the heated section to measure the temperature of the ambient air passing over the thermocouples at the core of the duct.

The net result is an increase in the temperature of the thermocouple above the temperature of the air stream it is supposed to measure. The result is an error in the reading from the thermocouple. A radiation shield can be positioned in the duct to show the effect of screening the thermocouples from thermal radiation from the duct wall.

A radiation shield, which remains close to the heated section to be measured, can be raised or lowered over the thermocouples to demonstrate the change in readings when a radiation shield is used. On HT16C this radiation shield is controlled by an electro-mechanical servo actuator under software control. On HT16 the radiation shield is positioned manually.

EXPERIMENTAL CAPABILITIES

- Errors associated with radiative heat transfer:
 - Effect of wall temperature on measurement error
 - Effect of air velocity on measurement error
 - Effect of thermocouple style on measurement error

- Methods for reducing errors due to radiation:
 - Design of a radiation-resistant thermometer
 - Use of a radiation shield to surround the thermometer

SHIPPING SPECIFICATION

HT16: Volume: 0.1m3 Gross weight: 9kg
HT16C: Volume: 0.2m3 Gross weight: 15kg

ORDERING CODES

HT16-A, HT16C-A: 230V / 1ph / 50Hz
HT16-B, HT16C-B: 115V / 1ph / 60Hz
HT16-G, HT16C-G: 230V / 1ph / 60Hz

OVERALL DIMENSIONS

HT16: Height: 1.22m Width: 0.30m Depth: 0.35m
HT16C: Height: 1.19m Width: 0.49m Depth: 0.44m

ORDERING SPECIFICATION

- A small-scale accessory to demonstrate how temperature measurements can be influenced by sources of thermal radiation
- Comprises three K-type thermocouples with different styles of bead mounted in a vertical air duct. A fan at the base of the duct provides a variable air flow over the cylinder. A band heater heats the duct wall adjacent to the thermocouple beads
- Heater rating 216W at 24V DC
- K-type thermocouples measure the air temperature upstream and the surface temperature of the heated duct section
- On the computer-controlled unit the air flow is electronically adjustable over the range of 0-9 m/s by a variable-speed fan, otherwise it is manually adjustable
- The air flow rate is measured by a vane-type anemometer in the outlet duct
- A radiation shield can be lowered over the thermocouples to demonstrate the improvement in reading accuracy when the thermocouples are shielded from the source of radiation
- The accessory is mounted on a PVC baseplate, which is designed to stand on the benchtop and connect to the Heat Transfer Service Unit without the need for tools
- A comprehensive instruction manual is included
EXPERIMENTAL CAPABILITIES

Bodies of different size, shape and material are allowed to stabilise at room temperature then dropped into the hot water bath. The change in temperature of each body is monitored. Analytical temperature/heat-flow charts are used to analyse the results obtained from different solid shapes. The results obtained from one shape can be used to determine the conductivity of a similar shape constructed from a different material.

Analytical solutions are available for temperature distribution and heat flow as a function of time and position for simple solid shapes, which are suddenly subjected to convection with a fluid at a constant temperature. Simple shapes are provided together with appropriate classical transient-temperature/heat-flow charts, which enable a fast analysis of the response from actual transient measurements. Each shape is allowed to stabilise at room temperature then suddenly immersed in a bath of hot water at a steady temperature. Monitoring of the temperature at the centre of the shape allows analysis of heat flow using the appropriate transient-temperature/heat-flow charts provided. An independent thermocouple mounted alongside the shape indicates the temperature of the water adjacent to the shape and provides an accurate datum for measurement of the time since immersion in the hot water.

TECHNICAL DETAILS

The equipment consists of a heated water bath together with set of instrumented shaped test pieces. Each of the shapes incorporates a thermocouple to measure the temperature at the centre of the shape. A total of six shaped test pieces are provided, ie three simple shapes (a rectangular slab, a long solid cylinder and a solid sphere) each manufactured in two different materials (brass and stainless steel). Measurements taken on a shape in one material can be used to confirm the conductivity of a similar shape constructed from a different material. Transient-temperature/heat-flow charts are supplied for each of the shapes.

A circulating pump mounted alongside the water bath draws water from the bath and returns it at the base of a vertical cylindrical duct, which is located inside the water bath at the centre. A holder ensures each of the shapes is quickly and correctly positioned within the vertical duct for measurements to be taken. The upward flow of water at constant velocity past the shape ensures the heat transfer characteristic remains constant and also ensures the water surrounding the shape remains at a constant temperature. The rate of water recirculation can be varied by using the HT10XC to adjust the DC voltage on the pump. The shape holder has been carefully designed to eliminate the need to touch the shape while its temperature stabilises in air, and also to position the shape accurately inside the water bath while transient measurements are taken. A thermocouple mounted on the shape holder contacts the hot water at the same instant as the solid shape and provides an accurate datum for temperature/time measurements. A thermostat allows the water to be heated to a predetermined temperature before taking measurements. The large volume of water in the bath ensures that any change in the temperature of the water, as the measurements are taken, is minimal. The water bath is heated by a mains powered electrical heater, and protected by a residual current device for operator safety. A thermocouple located in the water bath enable the temperature of the water to be monitored and adjusted to the required temperature.

ESSENTIAL ACCESSORIES

HT10XC Computer-Controlled Heat Transfer Service Unit with associated PC for data logging

REQUIREMENTS

Electrical supply:
HT17-A: 230V / 1ph / 50Hz @ 13 amp
HT17-B: 115V / 1ph / 60Hz @ 26 amp
HT17-G: 230V / 1ph / 60Hz @ 13 amp

OVERALL DIMENSIONS

Height: 0.67m
Width: 0.60m
Depth: 0.40m

SHIPPING SPECIFICATION

Volume: 0.17m³
Gross weight: 14kg

ORDERING CODES

HT17-A: 230V / 1ph / 50Hz @ 13 amp
HT17-B: 115V / 1ph / 60Hz @ 26 amp
HT17-G: 230V / 1ph / 60Hz @ 13 amp

ORDERING SPECIFICATION

- A small-scale accessory designed to enable exercises to be performed in unsteady-state heat transfer
- Comprises an electrically heated water bath, variable-speed recirculation pump, a set of solid thermal shapes and a shape holder
- The shapes supplied comprise a rectangular slab, a long cylinder and a sphere. Two of each shape are supplied, manufactured from brass and stainless steel, respectively. Each shape is instrumented with a thermocouple to monitor the temperature at the centre of the shape
- Analytical transient-temperature/heat-flow charts are supplied for each of the shapes
- The water bath heater is 3kW. The water bath includes an integral flow duct and a thermocouple to measure the water temperature
- The circulating pump ensures hot water flows past the solid shape under evaluation at constant velocity during the test. It is a variable-speed DC pump
- The accessory is mounted on a PVC baseplate, which is designed to stand on the benchtop and connect to the Heat Transfer Service Unit without the need for tools
- A comprehensive instruction manual is included
Based on a Peltier device, the Armfield HT18C Thermo-electric Heat Pump demonstrates how electrical power can be used to extract heat from a cool surface and transfer it to a hot surface. This effect is becoming widely used for point cooling (e.g., of semiconductor devices) and small-scale volumetric cooling.

The HT18C is designed for use with the Armfield HT10XC Heat Transfer Teaching Equipment.

TECHNICAL DETAILS

The thermoelectric Peltier device is positioned in a heat transfer path, between two copper blocks. It extracts heat from one block (cold reservoir) and transfers it to the other block (hot reservoir). In order to measure the heat transfer rate, the cold reservoir is fitted with an electric heater, powered by the HT10XC. By varying the electric power into the system, the behaviour of the system at different operating points and temperatures can be established.

The HT18C derives its power from the HT10XC, and so is protected by the same safety features when used in remote configuration.

All facilities are controlled directly from the computer, including heater power, Peltier power and water flow rate. All measured information is available on the computer. HT18C includes its own integral USB interface, connecting to the same computer as the HT10XC. The software supplied integrates the data to and from both these interfaces into a simple, user-friendly software control environment.

Performance of a Peltier device as a cooler:
- Heat transfer characteristics as a function of temperature and drive current
- Measurement of the coefficient of performance
- Energy balance
- Demonstration of a Peltier device as an electrical generator

EXPERIMENTAL CAPABILITIES

- Small-scale accessory designed to demonstrate the use of a Peltier device to transfer heat across surfaces
- Comprises a Peltier device, a heater, and a water-cooled heat exchanger
- Heat transfer rates up to 68W
- Heater power, Peltier drive and cooling flow rate all fully electronically adjustable under computer control
- Measurement of cooling water temperatures and flow to allow an overall energy balance
- The accessory is mounted on a PVC baseplate, which is designed to stand on a benchtop and connect to the heat transfer service unit without the need for tools
- A comprehensive instruction manual is provided
- Software is provided

ESSENTIAL ACCESSORIES

Requires HT10XC Heat Transfer Service Unit and a PC running Windows 98 or above, with two available USB interfaces.

REQUIREMENTS

- **Cold water supply**: 1.5 l/min @ 1 bar
- **Electrical supply**: All electrical requirements are obtained from the HT10XC service unit.

NOTE: the supply rating of the HT18C must be the same as the HT10XC that it is used with, i.e:

- HT18C-A: 230V / 1ph / 50Hz
- HT18C-B: 115V / 1ph / 60Hz
- HT18C-G: 230V / 1ph / 60Hz

OVERALL DIMENSIONS

- Height: 0.13m
- Width: 0.43m
- Depth: 0.53m

SHIPPING SPECIFICATION

- Volume: 0.07m³
- Gross weight: 15kg

ORDERING CODES

- HT18C-A: 230V / 1ph / 50Hz
- HT18C-B: 115V / 1ph / 60Hz
- HT18C-G: 230V / 1ph / 60Hz
The Armfield Free and Forced Convection unit has been specifically designed to demonstrate the phenomena of natural (free) and forced convection. Temperature profiles and heat flux over three different heat transfer surfaces can be easily studied.

The HT19 is designed for use with the Armfield HT10XC Heat Transfer Teaching Equipment.

UNIQUE FEATURES

- Transparent duct allows visualisation of the whole process
- Experiments can be performed outside the duct to give totally free convection
- The heated surfaces can also be operated on the bench to investigate the effects of orientation (guards provide safety)
- Simple interchange of heat exchangers (all incorporate their own heaters)
- Results can be compared directly to theory
- Powerful Armsoft software, with separate exercises for each configuration

TECHNICAL DETAILS

This unit consists of a bench mounted vertical air duct positioned on the top of a centrifugal fan. The air duct incorporates an aperture positioned at the rear wall of the duct, into which three different types of heat-transfer surfaces can be inserted. The three types of heat exchanger supplied are; flat plate, cylindrical pins and finned surface.

The unit incorporates an electrical heating element, with positive thermal cut-out, and thermocouples for precise temperature measurement. The clamping mechanism ensures accurate alignment of the surface inside the duct. The front wall of the duct is acrylic, to allow viewing of the heated surface and measurement sensors.

For forced convection, the centrifugal fan draws ambient air upward through a flow straightener and over the heated surface. A manually variable throttle controls the air flow. An air-velocity sensor measures the air velocity inside the duct upstream of the heat exchanger. Thermocouples measure the air temperature before and after the heated surface, together with the surface temperature at three positions along the extended surface exchangers.

On the HT19 the heater power, the air flow rate and the configuration of the heated surfaces can all be controlled via the HT10XC, either from the front panel controls or from the software.
FREE AND FORCED CONVECTION – HT19 – CONTINUED

ESSENTIAL EQUIPMENT
HT10XC Computer-Controlled Heat Transfer Unit

REQUIREMENTS
Electrical supply:
All electrical requirements are obtained from the service unit.

NOTE: the supply rating of the HT19 must be the same as that of the HT10X/HT10XC that it is used with, ie:

<table>
<thead>
<tr>
<th>Code</th>
<th>Voltage</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT19-A</td>
<td>230V / 1ph / 50Hz</td>
<td></td>
</tr>
<tr>
<td>HT19-B</td>
<td>115V / 1ph / 60Hz</td>
<td></td>
</tr>
<tr>
<td>HT19-G</td>
<td>230V / 1ph / 60Hz</td>
<td></td>
</tr>
</tbody>
</table>

OVERALL DIMENSIONS
Height: 0.95m
Width: 0.30m
Depth: 0.35m

SHIPPING SPECIFICATION
Volume: 0.1m³
Gross weight: 12kg

ORDERING CODES
HT19-A: 230V / 1ph / 50Hz
HT19-B: 115V / 1ph / 60Hz
HT19-G: 230V / 1ph / 60Hz

ORDERING SPECIFICATION
• A bench-mounted unit specifically designed to demonstrate the phenomena of free and forced convection and to measure temperature profiles from three different heat transfer surfaces
• Comprises a vertical air duct, with a transparent front for visibility mounted on a fan at the base of the duct, three heat transfer surfaces, air flow, and temperature probes
• Technical data is included for each of the three heat transfer surfaces, which will enable students and researchers to compare practical results with theoretical analysis for free and forced convection
• Three heat transfer surfaces supplied: a flat plate surface area 0.01 m², pinned extended surface area 0.0525 m², and finned extended surface area 0.1414 m²
• Vertical duct incorporates a transparent front wall allowing complete visualisation of the process and identification of the air flow and temperature sensors
• Each heat transfer surface is fitted with its own heater (240W) and thermocouples, to enable easy interchange
• All heat transfer surfaces incorporate guards to permit safe use outside of the duct for performing free convection experiments
• ArmSoft software includes separate exercises for each of the heat transfer surfaces in free or forced convection and records of all measured variables for analysis and comparison of the performances
• K-type thermocouples measure the air temperature in the duct before and after the heater, as well as the surface temperature of the heat transfer surfaces
• The air flow is manually adjustable up to 10 m/s
• The air flow is measured by an air-velocity sensor, which is inserted inside the duct
• Mounted on a PVC baseplate which is designed to stand on the bench top and connect to the Heat Transfer Service Unit with simple plug-in connections
• A comprehensive instruction manual is included
The unit comprises a cylindrical, electrically heated, nickel-plated aluminium core surrounded by a nickel-plated aluminium sleeve. The core and the sleeve are arranged so that a uniform narrow annular gap is created between the two parts, which is filled by the liquid or gas to be analysed. The temperature on each side of the fluid is measured by thermocouples in the surface of the core and the sleeve. HT20C adds an electronic proportioning valve and flow meter to vary and measure the flow using HT10XC. Both versions incorporate an insulated jacket to minimise heat exchange from and to the atmosphere.

The fluid to be tested is injected into the annular gap between the heated core and the cooled jacket using a hypodermic syringe. Measurement of the temperature difference between the heated and cooled surfaces together with the power supplied to the heater (measurement of DC voltage and current) using HT10XC allows the conductivity of the fluid to be calculated. The surface area and thickness of the fluid sample remain constant during all tests.

DESCRIPTION

- Understanding the use of the Fourier rate equation in determining the rate of heat flow by conduction through liquids or gases
- Measuring the constant of proportionality (the thermal conductivity k) of different liquids such as water and glycerol
- Calibrating the unit for heat losses using a gas, such as air with known thermal conductivity, then measuring the temperature difference across different gases, such as carbon dioxide and helium to determine their thermal conductivity k

DEMONSTRATION CAPABILITIES

FEATURES

- Thickness of the fluid sample is restricted to 0.5mm to minimise convection in the fluid sample
- Concentricity of the heated and cooled surfaces is accurately maintained using a spiral insulator
- Trapped bubbles of the previous liquid or gas sample are prevented by the spiral flow path when injecting a different liquid or gas
- ArmSoft software is supplied, with separate exercises for determining the thermal conductivity of liquids and gases

BENEFITS

- Complements the HT11 and HT12 accessories to provide a full investigation of thermal conductivity involving solids, liquids and gases
- Small sample of liquid or gas required to evaluate the thermal conductivity
CONDUCTIVITY OF LIQUIDS AND GASES – HT20 / HT20C – CONTINUED

TECHNICAL DETAILS

Thickness of fluid sample: 0.5mm (Fixed by the annular gap)
Nominal heat transfer area: 1.225×10^{-2} m2
Gas / liquid sample volume: 6.126ml
Maximum heater power: 200W at 24V
Maximum operating temperature: 90°C (limited by integral thermostat)

Software:
- Supplied with HT10XC
- Software capabilities: Control and logging of HT20/HT20C
- Software source code: Product / HT / HT10XC

ESSENTIAL EQUIPMENT

HT10XC Heat Transfer Service Unit
Optional accessories:
- PC to log data or control via HT10XC

REQUIREMENTS

Cold water supply: 1.5 l/min at 1 bar
All electrical requirements are obtained from the HT10XC Service Unit.
OTHER PRODUCTS IN THE HEAT TRANSFER RANGE INCLUDE:

HT30XC COMPUTER-CONTROLLED HEAT EXCHANGER SERVICE MODULE

- **Remote operation capability**

Computer-controlled heat exchange service unit, with a range of six interchangeable heat exchangers. All operational functions, including control of co- and counter-flow are now under computer control, and safety functions implemented to shut down the system in case of software or communication breakdown.

THERMODYNAMICS – TH SERIES

Extends the study of heat into the field of thermodynamics

The TH range is designed to introduce the fundamental principles of thermodynamics to enable the student to gain an understanding of these difficult concepts.

- **TH1: Temperature Measurement and Calibration**
- **TH2: Pressure Measurement and Calibration**
- **TH3: Saturation Pressure**
- **TH4: Recycle Loops**
- **TH5: Expansion Processes of a Perfect Gas**

FOR FURTHER INFORMATION ON THE ADVANCED FEATURES OF THE SOPHISTICATED ARMFIELD SOFTWARE VISIT:

www.discoverarmfield.co.uk/data/armsoft