The Didactec - Sanderson range of engineering teaching equipment is renowned for excellent quality of build, ease of use and set-up for staff and student.

The Armfield ADS or Armfield Didactec Sanderson range as it is now known has provided the fundamentals for Mechanical and Civil Engineering students the world over.

The products are available over two distinct series, The MAM series (this data sheet), and the complementary SV series.

TOPICS COVERED BY THE ADS - MAM SERIES

Topics covered by this Mechanical & Automotive Mechanisms (MAM) data sheet:
- Mechanical Mechanisms
- Automotive Mechanisms
- Theory of Machines

TOPICS COVERED BY THE COMPLEMENTARY ADS - SV SERIES

Topics covered by the complementary Statics & Vibrations (SV) data sheet:
- Statics
- Structures
- Vibration
- Balancing
- Materials Testing
The Armfield Didactec Sanderson Universal Bench Mounted Frame provides a very sensible alternative to wall mounting, particularly since many new buildings are predominantly glass, with very flimsy dividing walls.

The frame is designed to accommodate two items of ADS apparatus, allowing adequate space for students to work on each piece of equipment simultaneously. However it is possible to mount three pieces, in the case of the simple transmission system.

By mounting the apparatus on the frame, experiments can be transported between rooms to any convenient location.

OVERALL DIMENSIONS

- Height: 0.7m
- Width: 1.2m
- Depth: 0.5m
- Net Weight: 28 kg

SHIPPING SPECIFICATION

- Volume: 0.62 m³
- Gross weight: 32 kg
DESCRIPTION
This apparatus has been developed specifically for Motor Vehicle Mechanics and Motor Vehicle Technicians Courses. It provides a means of demonstrating the difference in braking torque between leading (Primary) and trailing (Secondary) shoe braking systems and the effect on the braking systems and the effect on the braking torque of the various combinations of leading and trailing shoes. When the two shoes are linked together, the self energising action can be demonstrated.

The apparatus is suitable for use in the laboratory and may be used by the Students to carry out simple experiments to investigate the relationship between actuating forces and the braking torques and for the determination of the co-efficient of friction between the brake lining and the drum.

Two shoes with short brake linings are provided, additional shoes with full linings (SD1:12a) are available should these be required. For more advanced work, a special shoe may be supplied, fitted with an adjustable lining (SD1:12b); this enables the Student to investigate the effect on the braking torque when the pressure point on the brake shoe is displaced relative to the pivot point.

The apparatus is self contained and may be wall mounted or fitted to the Universal Bench Mounted Frame (Ref SD1:10).

OVERALL DIMENSIONS
- Height: 0.54m
- Width: 0.48m
- Depth: 0.27m
- Net Weight: 22 kg

SHIPPING SPECIFICATION
- Volume: 0.14 m³
- Gross weight: 26 kg

REQUIREMENTS
- Weights: SD1.01 x 2
- SD1.02 x 2

OPTIONAL
- Mounting Frame: SD1.10
Most road vehicles are fitted with variable ratio gearboxes as a means of obtaining the best power application under the varying road conditions.

Fundamentally the gearbox consists of gear wheels of different sizes which may be engaged as required. The sliding mesh box, although it is still used on heavy commercial vehicles, is seldom found on modern cars, but its basic construction and operation are important from the Student’s point of view as it represents the basic layout from which most modern gearboxes have been developed.

The Sanderson gearbox has been designed to represent a typical arrangement of a simple three forward ratio and reverse sliding mesh box. The unit may be used for classroom demonstrations and by Students in the laboratory. Pulleys fitted with protractors are attached to the input and output shafts so that the Student may determine and verify velocity and torque ratios.

The Gearbox can be coupled to the Overdrive (Ref SD1:17) and Differential (Ref SD1:16) to represent a simple transmission system. The unit may be wall mounted or fitted to the Universal Bench Mounted Frame (Ref SD1:10).
DESCRIPTION

Many students find it difficult to visualise the action of a differential when used as a means of providing a drive from the gearbox to each axle shaft while allowing independent motion between shafts.

The Sanderson Differential Unit has been designed to demonstrate the action of:

Crown Wheel and Pinion rear axle drive and differential elements.

The teaching value of this unit is, however, not limited to it's use for demonstration purposes only, but may also be used for simple experimental work in the laboratory. A pulley fitted with a protractor is secured to the input shaft, the output bevels are grooved and may be loaded individually or by means of a differential pulley arrangement so that students can determine and verify velocity ratios and torque distribution.

The Differential can be coupled to the Overdrive (Ref SD1:17) and/or Gearbox (Ref SD1:15) to represent a simple transmission system. The unit may be wall mounted or mounted on the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.30m</td>
</tr>
<tr>
<td>Width</td>
<td>0.40m</td>
</tr>
<tr>
<td>Depth</td>
<td>0.38m</td>
</tr>
<tr>
<td>Net Weight</td>
<td>16 kg</td>
</tr>
</tbody>
</table>

SHIPPING SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.1 m³</td>
</tr>
<tr>
<td>Gross weight</td>
<td>20 kg</td>
</tr>
</tbody>
</table>

REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>SD1.02 x 2</td>
</tr>
</tbody>
</table>

OPTIONAL

<table>
<thead>
<tr>
<th>Optional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting Frame</td>
<td>SD1.10</td>
</tr>
</tbody>
</table>
DESCRIPTION

The Sanderson Overdrive Unit has been designed to demonstrate the action of the gear elements in simple epicyclic gear arrangements. The unit may also be used by students in the laboratory to carry out simple experiments on epicyclic gearing.

The apparatus illustrated has been designed specifically for Motor Vehicle courses and represents an application of a simple epicyclic arrangement of the type used in a motor vehicle overdrive.

Pulleys fitted with protractors are secured to the input and output shafts to enable the student to determine and verify velocity and torque ratios.

The unit may be wall mounted or attached to a Sanderson Universal Bench Mounted Frame (Ref SD1:10).

The apparatus is designed so that the overdrive can be coupled to the Gearbox (Ref SD1:15) and Differential (Ref SD1:16) to represent a simple transmission system.

OVERALL DIMENSIONS

- Height: 0.37m
- Width: 0.35m
- Depth: 0.38m
- Net Weight: 8 kg

SHIPPING SPECIFICATION

- Volume: 0.1 m³
- Gross weight: 10 kg

REQUIREMENTS

- Weights: SD1.02 x 2

OPTIONAL

- Mounting Frame: SD1.10
DESCRIPTION

Under conditions of braking or acceleration of a road vehicle, a load transfer between front and rear wheels occurs. The problem of load transfer arises since the accelerating or braking force is not applied to the centre of gravity of the vehicle but to the point of contact of the wheels with the road.

The Braking and Accelerating Forces Apparatus has been designed to demonstrate this load transfer and to enable the student to carry out simple experiments to investigate the relationship between the forces involved in vehicle braking and acceleration. The relationship between these forces on front wheel drive, rear wheel drive, and four wheel drive may also be demonstrated.

A "Model" Vehicle is supported on a beam load cell. The model has simulated road wheels and is drilled to receive a pin which may be inserted in varying positions to represent the centre of gravity of the vehicle.

Suitable weights, cords and pulleys are used to apply varying horizontal braking or acceleration and inertia forces to the vehicle. The apparatus is portable and may be used in either the classroom the laboratory.

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.80m</td>
</tr>
<tr>
<td>Width</td>
<td>0.30m</td>
</tr>
<tr>
<td>Depth</td>
<td>0.70m</td>
</tr>
<tr>
<td>Net Weight</td>
<td>18 kg</td>
</tr>
</tbody>
</table>

SHIPPING SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.3 m³</td>
</tr>
<tr>
<td>Gross weight</td>
<td>24 kg</td>
</tr>
</tbody>
</table>

REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
</table>
| Weights | SD1.01 x 2
 | SD1.02 x 1 |
DESCRIPTION

The Sanderson Belt Friction Apparatus has been designed to allow students to carry out investigations to compare the driving torque for a given degree of overlap of a flat leather belt, a badly fitted 'V' belt and a correctly fitted 'V' belt.

Tension is introduced into the belt by hanging a mass from the ring attached to the end. The slipping torque is determined by the addition of a suitable mass attached to a cord wrapped around the drum.

The angle of overlap can be varied from 30 to 210 degrees in increments of 30 degrees. The pulley is balanced and mounted on bearings to reduce frictional losses to a minimum.

The unit can be wall mounted or fitted to the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.33m</td>
</tr>
<tr>
<td>Width</td>
<td>0.20m</td>
</tr>
<tr>
<td>Depth</td>
<td>0.25m</td>
</tr>
<tr>
<td>Net Weight</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

SHIPPING SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.045 m³</td>
</tr>
<tr>
<td>Gross weight</td>
<td>10 kg</td>
</tr>
</tbody>
</table>

REQUIREMENTS

Weights SD1.02 x 2 or SD1.03 x 2

OPTIONAL

Mounting Frame SD1.10

1) Flat Leather Belt
2) 'V' belt in badly machined groove, to simulate a worn pulley or a wrong belt (belt bottoms in groove).
3) Belt in correctly machined groove.
DESCRIPTION

The simplicity of operation and the ease with which the student may understand the Mechanical Power Flow in the Borg-Warner 35 gearbox has made the Sanderson simulator extremely popular with lecturers and students alike, in Technical Colleges throughout the world.

Pins, inserted in accordance with the chart in the Laboratory Manual, lock discs to simulate the action of the clutches and brake bands.

Each of the three forward ratios and reverse may be selected as required simply by inserting the appropriate pins as specified in the chart, and the relative movements of the different components can be clearly seen and studied.

When the student has become familiar with the Mechanical Power Flow, he may then proceed to use the unit for diagnostic purposes. By following the step by step procedure laid down in the Laboratory Manual he is able to study the effect of a faulty clutch or brake band. Also included in the Laboratory Manual are the calculations for the gear ratios which are the same for simulator and the Borg-Warner Box.

The unit may be wall mounted or fitted to the Sanderson Universal Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

- Height: 0.60m
- Width: 0.25m
- Depth: 0.26m
- Net Weight: 15 kg

SHIPPING SPECIFICATION

- Volume: 0.09 m³
- Gross weight: 19 kg

REQUIREMENTS

- Weights: SD1.02 x 2

OPTIONAL

- Mounting Frame: SD1.10
The Sanderson Dynamic Balancing Apparatus may be used effectively in both the classroom and the laboratory for simple demonstrations and experiments in the dynamic balancing of rotating and reciprocating systems.

The rotating system is essentially a shaft, mounted on bearings, supported in a rigid frame, and driven by a small variable speed motor attached to the frame. Four discs, to which masses may be attached, are rigidly secured to the shaft. Each disc is suitably drilled and the sets of holes are positioned so that various conditions of un-balance in a rotating system can be simulated and the normal methods used to determine the magnitude and position of the counter-balance masses.

The unit is supported on springs attached to the main support frame so that the oscillations set up by any unbalanced forces may be observed.

The centre section of the shaft is in the form of a crank. A sleeve, piston and connecting rod are provided and may be fitted to the unit so that single cylinder engine balance conditions can be simulated. Various sector plates of suitable mass can be attached to the two inner discs so that the student can observe the effect on the oscillations of various conditions of partial balance of the reciprocating masses.

OVERALL DIMENSIONS

- Height: 0.47m
- Width: 0.60m
- Depth: 0.44m
- Net Weight: 28 kg

SHIPPING SPECIFICATION

- Volume: 0.22 m³
- Gross weight: 32 kg
DESCRIPTION

The Sanderson Plate Clutch Apparatus has been designed specifically for Motor Vehicle Technician Courses. It provides a means of demonstrating the effect of the mean radius of the friction surfaces and the spring pressure on the torque transmitted by a plate clutch.

The apparatus may be used effectively by the student in the laboratory to carry out simple experiments to investigate the relationship between the normal pressure applied to the friction surfaces, the mean radius of the friction rings and the torque at which slip occurs.

Three sets of clutch rings with varying mean radius are supplied and provision is made so that the student can observe the effect on the slipping torque when using more than one pair of friction surfaces.

The apparatus may be wall mounted or fitted to the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

Height: 0.30m
Width: 0.30m
Depth: 0.28m
Net Weight: 10 kg

SHIPPING SPECIFICATION

Volume 0.06 m³
Gross weight 14 kg

REQUIREMENTS

Weights SD1.02

OPTIONAL

Mounting Frame SD1.10
DESCRIPTION

The Sanderson Disc Brake Apparatus has been designed specifically for Motor Vehicle Courses and may be used effectively for classroom demonstrations. It may also be used by the student in the laboratory to carry out simple experiments to investigate the relationship between the normal force acting on the brake pads and the braking torque.

The brake pads are located on bell crank levers to which the load hangers may be attached. A special load beam is provided for use when carrying out experiments with two brake pads. The supporting shafts are suitably drilled and pins provided so that the bell crank levers may be located in a number of radial positions.

By attaching suitable masses to a cord wrapped round the pulley on the disc shaft, the braking torque may be determined.

This apparatus may be considered complementary to the Sanderson Drum Brake Apparatus (Ref SD1:12) and may be wall mounted or fitted to the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

- Height: 0.34m
- Width: 0.34m
- Depth: 0.32m
- Net Weight: 12 kg

SHIPPING SPECIFICATION

- Volume: 0.088 m³
- Gross weight: 16 kg

REQUIREMENTS

- Weights: SD1.02 x 2

OPTIONAL ACCESSORIES

- Mounting Frame: SD1.10
DESCRIPTION

The Sanderson Hydraulic System is a simple piece of apparatus designed specifically for Motor Vehicle and Mechanical Engineering Technician Courses. It is intended for use in either the classroom or laboratory and may be used for simple demonstrations to illustrate how liquid can be used to transmit a force. The apparatus may also be used by the student to carry out simple experiments to investigate the relationships between the force on the plungers, the cross sectional area of the plungers and the fluid pressure in the system.

The system consists essentially of three accurately machined cylinders and plungers whose cross-sectional areas are in the ratio 1, 2 and 6. The three cylinders and the pressure gauge are connected in parallel and “on/off” taps are included in the circuit so that any of the cylinder units may be isolated from the system. A clear Perspex oil reservoir is fitted to the “master” cylinder.

Two special load hangers are provided.

The unit may be wall mounted or fitted to the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.68m</td>
</tr>
<tr>
<td>Width</td>
<td>0.38m</td>
</tr>
<tr>
<td>Depth</td>
<td>0.28m</td>
</tr>
<tr>
<td>Net Weight</td>
<td>11 kg</td>
</tr>
</tbody>
</table>

SHIPPING SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.14 m³</td>
</tr>
<tr>
<td>Gross weight</td>
<td>14 kg</td>
</tr>
</tbody>
</table>

REQUIREMENTS

- Weights SD1.02 x 2

OPTIONAL

- Mounting Frame SD1.10
DESCRIPTION

The apparatus is intended to represent a simple engine mechanism and may be used by the students for simple experiments to investigate:

1) The relationship between the piston displacement and the crank angle for a given connecting rod/crank radius ratio.

2) The relationship between the turning moment on the crank shaft and the crank angle for a given force on the piston.

The crank effort may be determined by attaching suitable masses to the beam balance arm.

The piston is fitted with brass rollers running on guide bars and needle roller bearings are fitted in the connecting rod so that friction is reduced to a minimum.

A protractor is attached to the crank which may be rotated on the beam balance arm and clamped in any predetermined angular position.

A linear scale is attached to the piston guide so that the piston displacement can be measured.

The unit may be wall mounted or fitted to the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.54m</td>
</tr>
<tr>
<td>Width</td>
<td>0.48m</td>
</tr>
<tr>
<td>Depth</td>
<td>0.27m</td>
</tr>
<tr>
<td>Net Weight</td>
<td>14 kg</td>
</tr>
</tbody>
</table>

SHIPPING SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.14 m³</td>
</tr>
<tr>
<td>Gross weight</td>
<td>18 kg</td>
</tr>
</tbody>
</table>

REQUIREMENTS

Weights SD1.02

OPTIONAL

Mounting Frame SD1.10
DESCRIPTION

The Sanderson Geared System consists essentially of three shafts, each mounted on ball races, supported in a suitable frame and connected by gearing. Alternative interchangeable gear ratios are supplied.

A flywheel is attached to one of the shafts, whilst discs having varying mass moments of inertia may be attached to the other two shafts.

A torque drum is secured to each shaft and suitable masses, attached to a cord wound on to one of the drums, provide a means of applying a torque to the system.

By allowing the mass attached to the drum to fall a predetermined distance and measuring the time taken, the acceleration of the system can be calculated.

The apparatus may be wall mounted or fitted to the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

- Height: 0.65m
- Width: 0.33m
- Depth: 0.30m
- Net Weight: 23 kg

SHIPPING SPECIFICATION

- Volume: 0.14 m³
- Gross weight: 27 kg

REQUIREMENTS

- Weights SD1.02

OPTIONAL

- Mounting Frame SD1.10
The Sanderson Epicyclic Gear Units have been developed to enable students to carry out investigations concerning epicyclic gearing in simple and more advanced forms. A version of this apparatus is the Sanderson Coupled Epicyclic Unit Ref SD4:17 which uses two standard speed unit or a forward and reverse unit. Recently introduced, the Sanderson Three Speed Epicyclic Gearbox Ref SD4:18 provides two forward speeds and reverse. A bracket fitted with a spring balance which enables the student to measure the holding torque on each annulus can be supplied as an optional extra (Ref SD4:18a). Bearings are used extensively throughout these units to reduce frictional losses to a minimum. All epicyclic units can be wall mounted or fitted to the Sanderson Universal Bench Mounting Frame (Ref SD1:10).

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>SD4:17</th>
<th>SD4:18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.60m</td>
<td>0.60m</td>
</tr>
<tr>
<td>Width</td>
<td>0.25m</td>
<td>0.25m</td>
</tr>
<tr>
<td>Depth</td>
<td>0.26m</td>
<td>0.26m</td>
</tr>
<tr>
<td>Net Weight</td>
<td>18 kg</td>
<td>18 kg</td>
</tr>
</tbody>
</table>

SHIPPING SPECIFICATION

<table>
<thead>
<tr>
<th></th>
<th>SD4:17</th>
<th>SD4:18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.09m³</td>
<td>0.09 m³</td>
</tr>
<tr>
<td>Gross weight</td>
<td>22kg</td>
<td>22 kg</td>
</tr>
</tbody>
</table>

REQUIREMENTS

Weights SD1.02 x 2

OPTIONAL

Mounting Frame SD1.10
DESCRIPTION

The DIDACTEC range of mechanisms has been designed to provide simple equipment for use as classroom demonstrations or for simple laboratory exercises. The range covers some of the more commonly used mechanisms employed in engineering applications.

FEATURES

1) Simple to operate
2) All moving parts of the mechanism clearly visible
3) Suitable scales provided
4) Light and portable

OVERALL DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Width</th>
<th>Depth</th>
<th>Height</th>
<th>Net Weight</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slider Crank</td>
<td>0.31m</td>
<td>0.16m</td>
<td>0.06m</td>
<td>1.5 kg</td>
<td>DT9.01</td>
</tr>
<tr>
<td>Scotch Yoke</td>
<td>0.31m</td>
<td>0.16m</td>
<td>0.05m</td>
<td>1.5 kg</td>
<td>DT9.02</td>
</tr>
<tr>
<td>Slotted Link</td>
<td>0.31m</td>
<td>0.23m</td>
<td>0.06m</td>
<td>2.0 kg</td>
<td>DT9.03</td>
</tr>
<tr>
<td>Whitworth Quick Return</td>
<td>0.31m</td>
<td>0.16m</td>
<td>0.06m</td>
<td>1.5 kg</td>
<td>DT9.04</td>
</tr>
<tr>
<td>Four Bar Chain</td>
<td>0.39m</td>
<td>0.23m</td>
<td>0.06m</td>
<td>2.25 kg</td>
<td>DT9.05</td>
</tr>
<tr>
<td>Geneva Stop</td>
<td>0.23m</td>
<td>0.16m</td>
<td>0.16m</td>
<td>2.5 kg</td>
<td>DT9.06</td>
</tr>
<tr>
<td>Oldham Coupling</td>
<td>0.23m</td>
<td>0.16m</td>
<td>0.16m</td>
<td>2.5 kg</td>
<td>DT9.07</td>
</tr>
<tr>
<td>Hooke’s Joint</td>
<td>0.35m</td>
<td>0.23m</td>
<td>0.18m</td>
<td>4.0 kg</td>
<td>DT9.08</td>
</tr>
<tr>
<td>Cam and Follower</td>
<td>0.39m</td>
<td>0.23m</td>
<td>0.07m</td>
<td>2.25 kg</td>
<td>DT9.09</td>
</tr>
</tbody>
</table>
MECHANISMS DT9 SERIES - CONTINUED

Whitworth Quick Return DT9.04

Four Bar Chain DT9.05

Geneva Stop DT9.06

Oldham Coupling DT9.07
The Didactec - Sanderson, range of engineering teaching equipment is renowned for excellent quality of build, ease of use and set-up for staff and student.

The Armfield ADS or Armfield Didactec Sanderson range as it is now known has provided the fundamentals for Mechanical and Civil Engineering students the world over.

The products are available over two distinct ranges, The MAM Series (this data sheet), and the complementary SV Series (shown right).

COMPLEMENTARY PRODUCTS: ADS - SV RANGE

Topics covered by the complementary Statics & Vibrations (SV) data sheet:

- Statics
- Structures
- Vibration
- Balancing
- Materials Testing